web site hit counter Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications (Computer Vision and Pattern Recognition) - Ebooks PDF Online
Hot Best Seller

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications (Computer Vision and Pattern Recognition)

Availability: Ready to download

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alig Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems. Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications Provides a full and clear explanation of the theory behind the models Includes detailed proofs in the appendices


Compare

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alig Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems. Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications Provides a full and clear explanation of the theory behind the models Includes detailed proofs in the appendices

0 review for Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications (Computer Vision and Pattern Recognition)

Add a review

Your email address will not be published. Required fields are marked *

Loading...
We use cookies to give you the best online experience. By using our website you agree to our use of cookies in accordance with our cookie policy.